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ABSTRACT 

A  computer vision assisted  semi-automatic  virtual  reality  (VR)  calibration technology has  been 

developed that  can  accurately  match a virtual environment of graphically  simulated  three-dimensional 

(3-D) models to  the video images of the real  task  environment. In conventional  model-based  computer 

vision, camera  calibration  and  object  localization  are  performed sequentially. This sequential update 

cannot  compensate for the inaccuracy  in  initial  camera  calibrations. We have developed a new 20- 

variable weighted least-squares  algorithm that  updates  both  camera  and  object models simultaneously 

for given two camera views of two mating  objects.  This  simultaneous  update  enables  accurate  model 

matching even with  rough,  approximate  initial  camera  calibrations.  The developed semi-automatic  VR 

calibration  supports  automated  intermediate  updates,  eliminating nearly  all  operator  interaction  except 

for initial coarse matching. In our  quasi-static  supervisory  telerobotic  applications,  intermediate VR 

calibrations  are  performed  intermittently at a few robot  stopping poses only, as a cost-effective and safer 

approach  compared to real-time  visual servoing. Extensive  experimental  results  comparing  alignment 

errors  under various viewing conditions are presented  in the  paper. Using the VR calibration technology 

developed, we have successfully demonstrated an  orbital replacement  unit  (ORU)  insertion  task  within 
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the required f 1 / 4  in and f 3 ”  alignment precision. 

Key Words: virtual reality, calibration,  computer vision, model  matching,  simultaneous  update, su- 

pervisory  telerobotics. 

1. INTRODUCTION 

Graphic  simulation of telerobotic  operations using known 3-D geometric models of the remote-site 

task  environment  has  been widely used for off-line task  analysis and  planning  and also for operator 

training [15],  [22]. However, use of graphic  simulation  during the on-line telerobotic  operation  has  been 

limited  due to  the lack of accurate  matching between the graphically  simulated virtual environment and 

the real  task  environment. In  the  past decade  or so, there have been  considerable efforts to develop 

virtual reality (VR)  calibration  techniques  that  can  accurately  match  simulated 3-D graphic models 

to video images of the real  task  environment to  enable more reliable, high-precision telerobotic  oper- 

ations. An “operator-interactive” VR calibration  that performs 3-D model  matching using manually 

entered  corresponding model and image points was developed earlier,  and successfully demonstrated  its 

potential usefulness with a remote servicing task between Jet Propulsion  Laboratory (JPL)  and NASA 

Goddard Space Flight  Center  (GSFC) in May 1993  [13], [14], [MI. The  VR  calibration was achieved by 

two sequential model matching  procedures:  interactive  camera  calibration followed by interactive  object 

localization.  After the  calibration,  the  operator was provided with  calibrated  graphics overlay on  actual 

video images for immediate  human  visual verification and monitoring. This “operator-interactive” VR 

calibration  and video overlay technology has  been  transferred to industry, which is now commercially 

available [19]. Recently we have made  substantial improvements by incorporating  computer vision tech- 

niques,  resulting  in  high-accuracy  semi-automatic  VR  calibration.  This new computer-vision  assisted 

VR  calibration  supports  automated  intermediate  updates,  eliminating nearly all operator  interaction 

except for initial coarse matching.  Preliminary  results were presented  earlier [16], [17]. This  paper 

describes this new semi-automatic  VR  calibration  in  greater  detail  including  mathematical  derivations 

and extensive new experimental  results. 

VR  calibration  enables  supervisory  control  beyond  manual  teleoperation. So far,  manual  teleoper- 

ation [I], relying intensively on  human vision and intelligence for direct joystick control of a remote 
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manipulator,  has been the most  viable  solution to many  non-repetitive  remote  manipulations deal- 

ing with  man-made or natural  objects.  In supervisory  telerobotic  operation [26], the  operator issues 

higher-level commands  that  can  be executed  autonomously whenever possible. Autonomous  execution 

of higher-level commands generally demands model-based control.  One  main  reason of a difficulty with 

model-based supervisory  control is that  the present computer vision technology has very limited  capa- 

bilities in  generating  and  updating 3-D models in  accordance with  the scene. By contrast,  the  human 

visual  system  has  amazing  capabilities in generating and  updating  internal 3-D cognitive models in the 

brain  with  abundant visual illusions for clear perception [28]. In  an advanced  supervisory  telerobotic 

system  architecture  with a virtual reality  interface, the  system needs to  update  the  virtual 3-D world 

model intermittently  to  support higher-level command  executions. The computer-vision  assisted VR 

calibration  enables  semi-automated  accurate  updates of the  virtual 3-D world model. 

An  immediate  potential  application of the computer-vision  assisted VR calibration is for Interna- 

tional Space Station (ISS)  robotics, since the  camera viewing problem is a concern in ISS telerobotic 

operations  and vision system  assistance is needed for high-precision alignment. For instance,  during 

the  orbital replacement  unit  (ORU)  insertion task,  the  end effector close-up camera view is occluded 

by the ORU, while the overhead and  other cameras  provide  limited views. Due to  this visual occlusion 

and limited viewing problem,  it is often difficult to ensure baseline manual  teleoperation to satisfy the 

alignment  within the precision requirement  reliably [25]. For example, the alignment  requirement for 

ISS remote power controller module (RPCM) ORU (Fig. 1) insertion is f 1 / 4  in for each translation 

axis and f 3 "  for each rotational axis [3], [25]. The VR calibration  presented  in  this  paper  enables high- 

precision alignment by utilizing known geometric  object models and  their salient straight line edges in 

matching 3-D graphic models to  actual video images, not specifically requiring  artificial vision targets 

or fiducial markings  on  object surfaces. Use of known geometric models permits  the  VR  calibration  to 

work  well even with  partially occluded and limited  camera views.  Use of natural geometric  features 

of man-made  objects such as object  straight-line edges makes the VR calibration  not only versatile 

but more  robust  under  poor viewing and  harsh lighting  conditions, since vision targets  attached  on 

object surfaces are  in general much more sensitive to  camera viewing and lighting  conditions  compared 

to object-outline  natural edges. Accurate  positioning of vision targets is  cumbersome and expensive. 

Some objects  such  as an  RPCM receptacle  simply  do  not have enough  surface  space to  attach several 
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required vision targets  on. 

Another  important  advantage of VR  calibration for ISS robotic  applications is that  its software 

does  not have to  be installed  onboard. It  can  be installed on  the  ground as a cost-effective solution. 

With ground-based VR calibration, two control  modes  can be considered for ISS telerobotic  operations: 

1) ground-assisted  onboard  control and 2) ground  remote  control. In  the ground-assisted  mode, an 

on-board crew member  performing  such a task  as ORU insertion is assisted by VR  calibration  on  the 

ground. Video images received on  the  ground  are used to perform 3-D graphic model matching  through 

VR calibration. The relative  position between the ORU and  the receptacle is then  sent  to  the  on-board 

crew as a precision alignment  aid. In  the ground  remote  control  mode, a ground  operator  controls 

the space  manipulator  system  directly by issuing robot  auto move commands, while an onboard crew 

member may monitor the  robot motion.  Supervisory  control supported by VR  calibration is essential 

for ground  remote  operation, since simple  manual  teleoperation  has  undesirable  safety  problems due 

to a typical 2-8 s round-trip communication  time delay between a ground  control station  and  the low 

Earth  orbit. 

In  this  paper,  the concept of semi-automatic VR calibration  with  computer vision assists  is in- 

troduced  in Section 2. With a brief description of a local line detector  in  Section 3, a mathematical 

framework of line-based model  matching is described  in Section 4. Section 5 presents our key  new 

development of the  simultaneous  update  algorithm  that  calibrates  both  camera  and  object models si- 

multaneously,  enabling high-precision matching.  Section 6 describes the operational  procedure  used for 

the high-precision ORU insertion  task.  Extensive  experiments were performed to compare  algorithms 

under various viewing conditions, and  the  results  are described in Section 7. Section 8 is the conclusion. 

2. SEMI-AUTOMATIC  VIRTUAL  REALITY  CALIBRATION 

Three-dimensional model-based computer vision for object  recognition and localization  has  been 

studied extensively in the  past several  decades [2], [4], [6], [7], [9], [20], [24]. At present, 3-D model- 

based recognition that requires  global searches is not yet robust  enough to  be fully automated for general 

robotic  applications.  On  the  other  hand, 3-D model-based object  localization for pose refinement re- 

quires only local searches from a given initial  estimate,  and  can  be  automated  with  a sufficient reliability. 

For this reason, we have currently  implemented  semi-automatic  VR  calibration that consists of initial 
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operator-interactive coarse matching and subsequent automated fine matching  procedures. Assuming no 

prior knowledge of camera  calibration  parameters  and  object poses, the  initial coarse matching is based 

on the  human  operator’s  interactive  inputs  guided by superb  human visual  recognition. Two different 

operator  interaction  modes  are provided for initial coarse matching: 1) point-click and 2) graphic  model 

control, both using a mouse. In  the point-click interface, the  operator clicks on 3-D model  points  and 

their  corresponding 2-D image points using a mouse. After the corresponding  points  entry, the  system 

performs  point-based  camera  calibration and  object localization to complete the initial coarse match- 

ing. In  the  graphic model control  interface, the  operator uses a mouse to roughly align a graphic  model 

to a video image. The point-click interface is generally simpler and faster for initial coarse matching 

with 6-degree-of-freedom (dof)  position/orientation  and  camera focal length  adjustments.  The  graphic 

model control  interface  is, however, often useful when only minor adjustments  are needed. If initial 

approximate  calibration  estimates  happen to  be known, the  operator-interactive  initial coarse matching 

procedure  can be  skipped. After the  initial coarse matching,  automated fine matching is performed to 

achieve more accurate  matching by using 3-D model-based computer vision algorithms. We use a newly 

developed simultaneous update  computer vision algorithm that  updates  both  camera  and  object models 

simultaneously  based  on a 20-variable least-squares  method as described in  this  paper.  This simulta- 

neous update  algorithm significantly increases the accuracy of 3-D model matching  compared to  the 

conventional object  localization  algorithm [9], [13], [20], [23] that does not  compensate for inaccuracy 

in prior  camera  calibration. 

The above semi-automatic VR calibration  can  be  repeated at each intermediate  robot  stopping  pose, 

for example, along the  path  to  insertion, since the relative  alignment precision of VR  calibration in- 

creases further  as  the  mating  parts get closer to each other. In earlier  operator-interactive  manual VR 

calibration,  it would be very time-consuming since the  operator must  enter  the corresponding  points 

all over again for each  intermediate  VR  calibration. In  the new computer-vision  assisted VR calibra- 

tion,  intermediate VR calibrations  can  be  done easily by automated fine matching with  virtually no 

operator  interaction, since all the camera  and  object models are  already  fairly  accurate  through  the 

initial/previous  calibrations.  These  intermediate  updates  are closely related to position-based  visual 

servoing [ll], [30], since they  both perform  repeated vision-based position updates.  In  our implemen- 

tation,  intermediate VR calibrations  are  performed  intermittently at a few robot  stopping poses only. 

5 



In telerobotic  applications where the remote-site  task  environment is quasi-static  (target  objects  are 

fixed during  robot  positioning),  the  intermittent  update  method  has several advantages over real-time 

updates of visual servoing. It is cost-effective with low computational power and no  special  dedicated 

hardware  required. It increases reliability and safety, since the operator  has  time to verify the alignment 

and correct  it if necessary. It  permits ground-based VR calibration  in  space  telerobotic  operations, since 

communication time delay is not a problem. 

There  are several reports  on vision-based precise relative  positioning using two or  stereo  camera 

views despite  camera  calibration  errors [lo], [27]. In any  alignment  tasks using two camera views, it 

is in  general true  that  the alignment  error decreases as the two mating  parts gets closer to each other, 

regardless of the  camera  calibration  errors. For instance, when the two image points  are touching in two 

camera views, we can say that  the two points  are physically touching  independent of camera  calibration 

errors. However, if the  objects  are not  supposed to touch at  the desired  alignment,  accurate  camera 

calibration will yield better alignment precision. In  an ISS RPCM example, the receptacle  entrance 

frame is 1 /2  in larger than  the ORU in both  the horizontal and vertical  dimensions to allow f 1 / 4  in 

clearance. The simultaneous update  algorithm presented  in this  paper  tries to best  match  object models 

to two camera views by adjusting  both  camera  and  object models. When  inaccurate  camera  calibration 

parameters  are not  corrected as  in  the conventional sequential update  algorithm, alignment  errors are 

larger as  described in  this  paper. 

3. LOCAL  LINE  DETECTOR 

In computer vision, line features  are easier and more reliable to detect  compared to point  features, 

and  thus line-based model  matching  algorithms are employed in  our  implementation.  In  our  current 

application, we assume that image lines to  be  detected  are  already  adjacent  to  the  projected model 

lines through  human-operator-assisted  initial coarse matching. We thus employed a local edge detector 

instead of a global one for computational efficiency and precision. 

We currently use Gennery’s weighted-average local line detector [8], which is an enhanced version 

of the nearest edge pixel detector [9].  For a given projected 2-D model line, the weighted-average line 

detector  determines  the weights and location of the nearby image line in a least-squares sense. The 

given model line is first divided  into  intervals of about 3 pixels each. For each  interval, the line detector 
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searches edge elements at approximately  right  angles to  the  model line (the nearest  multiple of 45" 

from the image axes) by applying  Sobel edge operator  along  the search, and  computes  the weighted 

average of the edge elements  found. This weighted-average computation for each  interval  results  in one 

weighted-average edge point  per  interval. The line  detector  then  performs a weighted least-squares fit 

of a  line to these weighted-average edge points.  First we define an x'y'-coordinate  system such that 

the x'-axis is along the  model line with  its  endpoints at (0 0) and (0 L) .  By denoting the location and 

weights of the weighted-average edge element for the  j-th interval by (xi yi)  and wj ,  respectively, we can 

determine the  perpendicular distances from the two endpoints of the  model line to  the corresponding 

image line, hl  and h2, by the weighted least-squares  method [9]. By noting that  the image line  can  be 

described  as 
X' X' 

L L (1 - -) hl + (-) h2 y', 

the weighted least-squares  solutions for hl  and h2 are  determined by 

where Wimg is a 2 x 2  weight matrix of the resulting image line  measurements hl and h2 values, and 

its inverse w z g  is the covariance matrix describing their variances and covariances. Typical values of 

wT1 indicate that  standard deviations of the image line  measurements  usually  range from 0.1 pixel zmg 

for a  good  straight image line to 10 pixels to a  poor one. In order to take  into  account  the modeling 

errors, for example,  due to inaccuracy  in 3-D geometric models and nonlinearity  in  camera  models, the 

systematic  error  component is added to  the weight matrix  computation. 

w = [ w- zmg 1 + a:y,I]-' , 

where I is the 2 x 2 identity  matrix,  and osys = 0.5 pixel is  chosen as  a  nominal  value by observing average 

residual values of the line-based  model  matching  least  squares methods described  in  next  Sections. 
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Once hl and h 2  are  obtained,  the  endpoint locations of the  detected image line in image coordinates 

can  be  computed. If ( u 1  211) and ( u 2  212) are  the two endpoints of the  projected 2-D model line, its 

length  and cosine and sine values of the slope  angle are 

and  the corresponding  image line endpoints  in image coordinates  are 

By computing the weights and  endpoint locations of the image line given by (5),  (9), and (10) for each 

visible model line, we can  generate a list of corresponding  model and image lines. Only visible model 

lines are used to avoid unwanted false matches. This list is then used in line-based camera  calibration 

and  object localization as described  next. 

4. LINE-BASED MODEL MATCHING 

Kumar [20] showed that  the least-squares  algorithm for object  localization that solves for the  rotation 

and  translation simultaneously [24],  [29] yields much better  parameter  estimates in the presence of 

noisy data  than  another  approach  that solves for rotation first and  then  translation [21]. He further 

showed that  the infinite model-line algorithm  performs  better  than  the infinite image-line algorithm 

when extracted image lines have significant broken segments.  Our  algorithm derived here  corresponds 

to  the infinite model-line approach  in  concept,  but  its  mathematical  derivations  are generalized so that 

they  can  be used for both  camera  calibration  and  object localization that  can  handle multiple  camera 

views. These unified derivations  greatly  help  a  simple, concise formulation of the simultaneous update 

algorithm of the  next Section. 

8 



For a given 3-D object  model  point (xm,  ym, zm) in  object model coordinates,  its 2-D projection  on 

the image plane (u,  V )  in  camera image coordinates  can  be  computed by 

V = - f -  Yc 
Z C  

where M transforms  object model coordinates to world coordinates, V transforms world coordinates 

to camera viewing coordinates,  and f is the camera focal length which is the  distance from the lens 

center to  the image plane. The camera focal length is equal to  its lens focal length when the focus is 

at infinity. The  4x4 object pose transform M describes the  object pose relative to  the world reference 

frame. The inverse of the 4x4  camera viewing transform V describes the  camera pose relative to  the 

world reference frame. The above relations of (11) - (14) are often  presented  in a matrix form 

W = PVM 

Xm 

Ym 

Zm 

1 

= CM 

Xm 

Ym 

Zm 

1 

where w is a homogeneous coordinate scale factor and P is a 3x4  perspective  projection matrix 
- - 

f o  0 0  

p =  O f  0 0  

0 0 - 1 0  - A 

. In  the above derivations, the  camera imaging geometry is formulated by the pin-hole  camera  model, 

where the 3-D model  point and  its corresponding 2-D image point  are  related by linear  perspective 
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projection  without  considering, for example,  nonlinear  distortion of lens optics. It is further assumed 

that  the camera  optical  axis is perpendicular to  the image plane,  and passes through  the center of the 

camera view with zero offsets of the image center  from the  optical axis.  Square-pixel  resolution is also 

assumed for the  captured video images, having  uniform scaling for both horizontal and vertical axes. 

The common 640x480 pixel resolution for the  NTSC video image (4:3  aspect  ratio) is a square-pixel 

resolution. 

The relations  described above for the perspective  projection of a point  can  be  directly  applied to 

the line-based model  matching. Since a 2-D projection of a 3-D model  line  is  still a straight line, the 

projected 2-D model line can  be  simply  computed by  2-D projections of the two endpoints of the 3- 

D model line. Let (u1, q )  and ( q ,  w2) denote  the  computed 2-D image plane  projections of the two 

endpoints of a 3-D model line, (xml,  yml, zm1) and (xm2, ym2, zm2), respectively. 

W 

20 

= CM 

Further  let (21, y1) and ( 2 2 ,  y2) denote  the two endpoints of the 2-D image line detected by the weighted- 

average local edge detector  (Section  2). The normal  distances  from  the image line endpoints  to  the 

projected 2-D model line are given by 

where 
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In  the line-based model  matching, the least-squares  solution is obtained that minimizes the normal 

distances between the  projected 2-D model lines and  their corresponding actual 2-D image lines in  the 

least-squares sense. The line-based model  matching  can  be used for both  camera  calibration  and  object 

localization. In  the  camera  calibration, we determine C ,  or equivalently V and f ,  for given M. If 

M = I (identity  matrix),  the  camera  calibration is performed  relative to  the object  model reference 

frame. Since the 4 x 4  camera viewing transform V can  be equivalently represented by three  translational 

displacements (zc, yc,  z ~ )  and  three  rotational angles (QC,  PC,  yc), the unknown vector to  be solved 

for the  camera  calibration is defined by 7 variables including the camera focal length: 

Sometimes an  accurate  camera focal length is known, e.g.,  in a fixed focal-length  camera, and  the  camera 

calibration  in  this case determines  the six pose parameters only. In  the  object localization, we determine 

M for given V and f .  Since the 4 x 4  object pose transform M can  be equivalently  represented by three 

translational  displacements ( z ~ ,  y ~ ,  z ~ )  and  three  rotational angles ( Q M ,  P M ,  y ~ ) ,  the unknown vector 

to  be solved for the  object localization  is defined by 6 variables: 

When M pairs of corresponding model and image lines are given, we have 2M equations 

where a 2 x 1  vector hi(x) consists of two normal  distances of (19) and (20) for the  i-th corresponding 

model and image lines, 
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Note that x = xc of ( 2 5 )  for camera  calibration  and x = XM of (26) for object  localization.  When 

M > N / 2  where N is the  number of variables of x, the  system is overdetermined and a weighted 

least-squares method can be applied to find x that minimizes the weighted sum of the squares of all 

2 M  normal  distances 
M 

i= l  

where wi is given by ( 5 ) .  

wa = 

By denoting 

W =  

(29) becomes 

1 W l l i  w12i 1 .  
W1 0 

0 WM 

f(x) = H~(x)wH(x) .  (32) 

Since H(x) contains  nonlinear  functions of x, the nonlinear  least-squares  solution that minimizes f (x)  

can be obtained by Newton-Gauss  method, which is a combination of Newton's  method  and  the  least- 

squares  method  originated by Gauss. The  k-th  iteration can  be  described  as 

where the  Jacobian is defined as 
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Ai, Bi, and Ci are  functions of uli, uti,  uzi, and u2i, and  their  partial derivations  can  be  found  in [13]. 

By noting that W is a block diagonal matrix with each block being  a 2 x 2  matrix,  computation of (33) 

can  be  done  more efficiently  by using the relations 

5. SIMULTANEOUS UPDATE OF CAMERA AND OBJECT MOD- 

ELS 

In  conventional  approach,  camera  calibration and object  localization  are  performed  sequentially. 

This sequential update  assumes  that  the  camera  calibration provides sufficiently accurate  camera cali- 

bration  parameters for the subsequent  object  localization.  Accurate  camera  calibration, however,  gen- 

erally  requires  a  calibration  fixture.  Placing  a  calibration  fixture whenever the camera  parameters  are 

changed, for example, due  to  camera  pan,  tilt, zoom, or focus control,  is  not  practical for telerobotic 

applications.  In our  practical  approach,  an  object  with known geometric  model that is naturally seen 

by the cameras during telerobotic  operation is used for camera  calibration. Let us consider  a  typical 

telerobotic  task  environment to perform parts  mating of objects M I  and M2 using two cameras, C1 and 

C2. The  camera  calibration of C1 can be  performed by matching  the object  model MI to  the  camera 

view C1. From (27), 

HC1M1 (XCl)  = 0 .  (40) 
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After the above two camera  calibrations,  the  object  localization of M2 can  be  performed by matching 

object model M2 to each camera view. 

The least-squares  solution x~~ = ( X M ~ ,  y ~ ~ ,  Z M ~ ,   cy^^, Ph.iz, 7 ~ ~ ) ~  can  be  computed for given xcl and 

xcz. Note that xcl and xc2 are intentionally  added as function  arguments  in (42) and  (43), since they 

are needed for the simultaneous  algorithm. 

Combining the above four equations  with 20 unknown variables  results  in the simultaneous update 

algorithm for two objects  with two views. 

H(x) = 0 ,  (44) 

where x consists of 7 variables of xcl for camera C1, 7 variables of xc2 for camera Cz, and 6 variables 

of X M ~  for object M2. The  object pose MI is fixed in this  derivation, since one frame  must  be fixed 

to get a unique  solution. With more than 10 corresponding  model and image lines, the nonlinear  least 

squares  solution of (44) can  be  obtained by the Newton-Gauss  method. Its  Jacobian is given by 

We applied both sequential and simultaneous update  algorithms  to  an RPCM-like ORU insertion 

task using two views (side and overhead views C1 and C2) for comparison. Both cameras were set 

by manual  pan,  tilt, zoom, and focus control. The camera focal lengths were approximately 50 mrn 

(vertical field of view angle 5.5") for the side  camera  and 25 mrn (11") for the overhead camera. The 

inter-camera  angle between the two camera  optical  axes was approximately 50". The side  camera was 
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about 7.5 m away from the receptacle, and  the overhead one was about 3.5 m away. First,  the line- 

based camera  calibration was performed for each camera by matching the ORU graphic model MI to 

its  camera view. After the  camera  calibrations,  the ORU graphic  model was  well aligned to  its  camera 

views. Thereafter the object  localization was performed by matching  the receptacle  graphic model M2 

with  its  camera views. In Fig. 2, the receptacle  localization was performed by using the side  camera 

view  only. The receptacle  model pose was determined to best align the  projected model and image 

lines in the least  squares sense. Since only the side  camera view (top window in Fig. 2) was used, 

the receptacle  graphic  model was not aligned in  the overhead camera view (bottom).  In Fig. 3, the 

receptacle  localization was performed by using the overhead camera view (bottom) only, and  this  time 

the receptacle  model was not aligned in  the side  camera view (top). Fig. 4 shows the video overlay after 

the receptacle  localization was performed using both  camera views. Note that  the receptacle  model 

was still visibly misaligned in both  camera views. This poor  alignment was mainly due  to inaccuracy 

in  camera  calibrations.  Note  again that  the ORU was used for camera  calibration which provided less 

accurate  and  sparse  input  data, since an accurate  camera  calibration  fixture was impractical to use. The 

inaccuracy  in  camera  calibrations causes the subsequent  object  localization of the  sequential  update  to 

be also inaccurate.  Fig. 5 shows the model  matching  result  obtained  with the  simultaneous  update. Note 

that  the receptacle model is very well aligned in  both  camera views. Unlike the sequential update,  the 

simultaneous  update  algorithm  updated  both  the  camera  and  object models simultaneously, achieving 

accurate  matching even with  rough,  approximate  initial  camera  calibrations.  This clearly demonstrates 

that  the simultaneous update is essential to achieve high-precision model  matching  using two views. 

6. OPERATIONAL PROCEDURE 

The above line-based simultaneous  update  algorithm  has been developed for automated fine match- 

ing to refine camera  calibration  and  object pose estimates,  assuming  approximate  initial  camera cali- 

bration  and  object pose parameters  are known. Note that  the  current  algorithm employs a local edge 

detector  that searches  nearby image lines only, within  approximately 20 pixels or so, for a given pro- 

jected model line. Therefore, when initial  camera  and pose parameters  are  not known fairly  accurately, 

an operator-interactive coarse matching  procedure needs to  be performed first before automated fine 

matching. In  initial coarse matching, an operator clicks model points  and  their corresponding image 
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points by using a mouse. Once  corresponding  points are  entered, point-based  camera  calibration fol- 

lowed  by point-based  object  localization  can  be  applied to determine  the  object pose as presented  in our 

earlier  paper [13]. This sequential update, however, does not compensate for initial  camera  calibration 

errors  during  the subsequent  object  localization, and  initial  camera  calibrations need to  be sufficiently 

accurate.  In [13], the solution was to move the  robot  arm holding an ORU to  three different poses to 

enter more corresponding  points over a wider region. This  calibration  procedure is time-consuming and 

took about 10 to 20 minutes. 

Our new solution is to use point-based  simultaneous update  algorithm, which is very similar to  the 

line-based simultaneous update  algorithm described  in  earlier  Sections. It  turns  out  that  this new point- 

based simultaneous update no longer requires  robot arm re-positioning to cover a wide region for data 

entry, since the  algorithm compensates for initial  camera  calibration  errors.  Fig. 6 shows a display screen 

after an  operator completes the corresponding  points data  entry for one view. The  operator clicks a 

graphic  model  point  on  the  top video overlay window  by using a mouse, and  then clicks the corresponding 

image point  on the same window (graphic models disappear  during  the image point  entry).  During  this 

data  entry,  the  operator  can  adjust  camera  and  graphic models using a mouse. The lower video image 

window  shows all the corresponding image points  entered so far. Five or  more  points for each of ORU 

and receptacle  per  camera view are usually  desired. In Fig. 6, seven points for ORU and six points for 

receptacle are  entered for this view. Note that corresponding  points  entered are well distributed on the 

video image. The  operator  data  entry  time for two camera views typically  takes  approximately  2 to 3 

minutes  in total.  The  current  graphic model states set by the  operator’s mouse control are fed to  the 

least-squares  algorithms as initial  states together  with  correspondence data.  In  the specific example 

of Fig. 6, all the least-squares  algorithms of point-based  camera  calibration,  object  localization, and 

simultaneous update converged well to  the desired solutions  from the  initial  graphic model states shown 

in the  picture. Even when the  initial  graphic model poses were intentionally  set to more than 40 degrees 

off from the  actual poses, they  still  all converged well.  However, in some other  camera viewing conditions 

with different initial poses, we noticed that  the convergence range of the point-based 20-dimensional 

simultaneous update was often less wide than those of the sequential  update. In order to maintain  the 

convergence range as wide as  the sequential update in  general,  point-based  simultaneous update  can  be 

preceded by point-based  sequential  update of camera  calibration  and  object  localization for operator- 
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interactive coarse matching. Since computation  times for least-squares  methods are negligible compared 

to human data  entry  time,  an inclusion of the  optional sequential update does  not  reduce the  operational 

efficiency. After the point-based  simultaneous  update,  the  automated  lined-based  simultaneous  update 

algorithm  can  be  applied for fine matching  and pose refinement. 

Here is the  operational procedure used to  demonstrate a high-precision ORU insertion  into  its 

receptacle. (1) Move the  robot  arm holding the ORU to  an initial  position. (2) Grab video images from 

two cameras showing both  the ORU and  the receptacle. (3) Enter corresponding  points using a mouse 

for both views. (4) Apply point-based  camera  calibration and  object  localization sequentially. ( 5 )  Apply 

point-based  simultaneous update. (6) Apply  computer vision assisted line-based simultaneous update. 

This completes VR calibration at  the initial ORU pose, and  the  system now  knows the receptacle 

pose relative to  the ORU. (7) Move the  robot  arm holding the ORU to  the next  via  point  towards 

the receptacle. (8) Grab video images from the  same two cameras,  and  apply line-based simultaneous 

update (or object  localization) for further pose refinement. No operator-interactive data  entry is needed 

at  this  time, since fairly accurate  estimates of camera/object  variables  are  already known in  previous 

VR calibration. As the ORU gets closer to  the receptacle, new update increases the alignment precision. 

(9) Repeat  the above intermittent  update/pose refinement at next via points,  until the ORU reaches at 

alignment  ready for insertion. (10) Insert  the ORU. This procedure was successfully used to  demonstrate 

high-precision ORU insertion  within the   f1 /4  in and f 3 "  alignment precision for various viewing and 

object pose conditions both  at  Jet  Propulsion  Laboratory  and at  NASA Johnson  Space  Center [12]. A 

video tape is also available [ 5 ] .  

7. EXPERIMENTAL RESULTS 

A series of experiments were performed using an RPCM-like ORU insertion  task.  First,  three se- 

quential  and one simultaneous  update  algorithms were compared by running  each  algorithm five times 

to measure the alignment  errors. The ORU was 20 in away from its receptacle and  the  inter-camera 

angle between the two cameras used was approximately 90". The alignment  error was measured by 

comparing the  true alignment pose with  the  algorithm  estimate.  The  true alignment pose of the ORU 

relative to  the receptacle was obtained by careful human visual  alignment  roughly  within about 0.05 in 

and 0.5" precision. The position  alignment  error was computed  as  the vector sum of the translational 
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alignment  errors for the  three axes.  Similarly, the  orientation alignment  error was computed  as  the 

vector sum of the  rotational alignment  errors for the  three axes. The experimental  results  are  shown 

in  Fig. 7. The alignment  error standard deviation from the  true alignment was computed  from five 

runs for  each algorithm,  and  the  computed  standard deviations  are  connected by a dashed  line.  The 

position/orientation  alignment  error  standard  deviations were 1.57 in/2.69" for the sequential update 

using  a single camera view C1, 1.64 in/4.12" for the sequential update using  a single camera'view  C2, 

0.51 in/1.19" for the sequential update using both  camera views, and 0.21 in/0.88" for the simultaneous 

update using both  camera views. In  this  experiment,  the  position  alignment  with  the two-view simul- 

taneous update was about 8 times  more precise than  that with the single-view simultaneous updates, 

and  about 2.5 times  more precise than  that with the two-view sequential update.  The  orientation align- 

ment  with  the simultaneous update was about 3-5 times  more precise than  that  with  the single-view 

sequential updates,  and 1.4  times better  than  that  with  the two-view sequential update. 

Second, the effect of the ORU-receptacle  distance and  the effect of the inter-camera  angle  on the 

alignment  error were investigated  together. The alignment  errors were measured by running  the simul- 

taneous update algorithm five times each for four ORU positions of 20, 8, 4, and 2 in away from the 

receptacle at four different inter-camera angles of 90, 51, 28, and 14 degrees. The experimental  results 

are  plotted  in  Fig. 8 as  a  function of the ORU-receptacle  distance. The same  experimental  results 

are  plotted  in  Fig. 9 as  a  function of the inter-camera  angle.  Fig. 8 shows that  the alignment  error 

reduces  as the ORU gets closer to  the receptacle. This clearly  illustrates that  intermittent  updates  at 

intermediate  robot  stopping poses on a  path  to insertion  increases the alignment  precision.  Fig. 9 shows 

that  the alignment  error  reduces  as the inter-camera  angle  increases  towards 90" (orthogonal  view). For 

each of the inter-camera  angles at 28", 51", and 90" except for 14",  all five runs of the VR  calibration 

satisfied the  1/4 in, 3" alignment  precision  requirement when the ORU reached at 2 in in  front of the 

receptacle. The alignment  precision was poor for the 14" inter-camera  angle. The  above experimental 

results  indicate that  the ORU insertion  can be performed successfully within  the  1/4 in, 3" alignment 

precision requirement when the inter-camera  angle is greater  than  about 30 degrees. 

Finally, the effect of the  object image size (zoom) on the alignment  error was investigated.  In  our 

setup, one camera  happened to be  equipped  with  a zoom lens, and  the  other with  a  fixed-focal-length 

lens. Three different viewing sizes of lo-, 20-, and 30-in-wide views  were obtained by adjusting  the 
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zoom of the zoom-lens camera  and  re-positioning the fixed-lens camera closer to or  further away from 

the receptacle, so that each of the two camera views  covers just enough to see both  the ORU and 

the receptacle when they  are  10, 20, and 30 in  apart, respectively. The image sizes of the ORU and 

receptacle for the 10-in-wide view are larger than those for the 30-in-wide views. The inter-camera 

angle was set to 90". As expected, the experimental  results  in Fig. 10 show that  the alignment  error 

increases as  the  object image size gets  smaller. 

Another way to investigate the alignment  error is to compute 1-0 error ellipses from the covariance 

matrix (JTWJ)-l resulting  from  the least  squares  solution. In order to have the  resulting covariance 

matrix represent  camera pose variances  in  camera  frames while object pose variances in  object  frame, 

each iterative  update of the least-squares  method  described in Section 4 and 5 needs to  be performed 

in  incremental  form.  In  the  incremental  update, unknown variables xc of (25) and XM of (26) are 

associated  with  incremental adjustments of camera and object poses AV and AM. In each iteration, 

V and M are  updated by 

V = AV  V, (47) 

M = MAM, (48) 

and  the  initial conditions for the  next  iteration  are set to AV = AM = I or xc = XM = 0. Note that 

AV is  pre-multiplied, while AM is post-multiplied. If AV is  post-multipied and AM is pre-multiplied, 

they  both  are expressed relative to  the world reference frame (see (11) and (12)). From the covariance 

matrix (JTWJ)-' resulting  from  the above incremental-form  least  squares  solution, we can  compute 1-0 

error ellipses, which are 2-dimensional projections of the 20-dimensional error ellipsoid (18-dimensional 

if two camera focal lengths  are given). For instance, 4 elements of the covariance matrix associated with 

variables xi and x j  form 

and  the 1-0 standard  error ellipse is given by 

(-)2 - 2 p ( - ) ( - )  + (-) = 1 - p2 ,  
X X Y   Y 2  

Oi ai O j  aj 

where the correlation coefficient p = aij / u p j .  

Error ellipses obtained  are shown in Fig. 11 for the  experimental condition shown in Fig. 5, where the 

ORU was approximately 10 in  away from the receptacle. The  standard  deviations of the  camera poses 
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along the  camera axes (z axes) are very large for both cameras and  their  error ellipses for z axes (upper 

left and middle left plots of Fig. 11) are  truncated.  This is because the  camera pose along the  optical 

axis and  the field of view angle  are highly correlated,  in  particular  when the camera  lens  has  a  small 

field of view angle  (telephoto  lens)  with  little  perspective viewing effect. The  standard deviation u of 

the receptacle pose estimate  (bottom plots of Fig. 11) is within 0.14 in along  all  three  axes,  indicating 

that 30 for 95% confidence level  is within 0.41 in in  this  experimental  condition. As the ORU gets 

closer to  the receptacle, the relative pose estimate  gets  more  accurate. For example,  when the ORU is 

less than  5 in away, the pose estimate was  less than 1/4 in at 95% confidence level. These covariance 

error  analysis  results  agree with  the experimental  results  in  Fig. 8. The covariance error  analysis  can 

provide  a powerful tool  in  comparing pose estimate  errors of different objects  under  various viewing 

conditions, without relying  on  extensive actual  error  measurement experiments. We could  also use the 

non-weighted covariance matrix (W = I) for error  analysis, by assuming  uniform  one-pixel  standard 

deviation for the image edge measurements.  In  our  various  experimental  conditions, this  assumption 

appears  to  be fairly  reasonable. As an example, for the experimental  condition  shown  in  Fig.  5, the 

root-mean-squared  residual of the simultaneous update least  squares method was 1.2 pixels, and  the 

maximum  residual was 3.7 pixels. 

8. CONCLUSION 

We presented an exciting new technology of computer vision assisted semi-automatic VR  calibration 

for reliable, high-precision telerobotic  servicing.  In particular,  the newly developed simultaneous update 

of both  camera  and object models were described  in  great  detail  as  a key  new technique to produce high 

precision alignment. Experimental  results  indicate  that  the simultaneous update yields considerably 

more precise matching than  the conventional  sequential update  that does not  compensate for inaccurate 

camera  calibration  parameters.  Experimental  results  also  indicate that  intermittent  updates  at a few 

intermediate  robot  stopping poses increases the alignment precision further.  This  semi-automatic VR 

calibration  provides a new way  of performing  more  reliable and  accurate telerobotic  servicing with 

model-based  supervised  autonomy  beyond  simple  manual  teleoperation. 
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Figure 1: A schematic of the remote power controller  module (RPCM). 
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Figure 2: Receptacle  localization  using the side  camera view (top) only. 
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Figure 3: Receptacle  localization using the overhead camera view (bottom) only. 
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Figure 4: Receptacle  localization using both camera views. 
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Figure 5 :  Simultaneous  update using both cameras. 
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Figure 6: Corresponding  points data entry for operator-interactive  initial coarse matching. 
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Figure 7: Alignment error  plots  comparing  sequential and simultaneous updates 
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Figure 8: Alignment  error  with  respect to  the ORU distance  from  the  receptacle 
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